Digital Arithmetic

Digital Arithmetic: Operations and Circuits

Binary Arithmetic

- Digital circuits are frequently used for arithmetic operations
- Fundamental arithmetic operations on binary numbers and digital circuits which perform arithmetic operations will be examined.
- Binary numbers are added like decimal numbers.
- In decimal, when numbers sum more than 9 a carry results.
- In binary when numbers sum more than 1 a carry takes place.
- Addition is the basic arithmetic operation used by digital devices to perform subtraction, multiplication, and division.

If the numbers are unsigned and positive add them as follow:

1 + 0 = 1	with carry of 0
1 + 1 = 0	with carry of 1
1 + 1 + 1 = 1	with carry of 1

For example: 011.011 + 010.110 = 110.001 = 6.125 base 10

Adding Unsigned Numbers

Examples:

Х	190	10111110
Y	141	10001101
Х	127	1111111
Y	63	111111
Х	170	10101010
Y	85	1010101

Adding Unsigned Numbers

Examples:

	X Y	190 141	10111110 10001101
	X+Y	331	101001011
X Y		127 63	1111111 111111
	X+Y	190	10111110
X Y		170 85	10101010 1010101
x	+Y	255	11111111

Representing Signed Numbers

- Since it is only possible to show magnitude with a binary number, the sign (+ or -) is shown by adding an extra "sign" bit.
- A sign bit of 0 indicates a positive number.
- A sign bit of 1 indicates a negative number.
- The 2's complement system is the most commonly used way to represent signed numbers.

Examples of 2's complement representation

Representing Signed Numbers Converting to 2's Complement

- In order to change a binary number to 2's complement it must first be changed to 1's complement.
 - To convert to 1's complement, simply change each bit to its complement (opposite).
 - To convert 1's complement to 2's complement add 1 to the 1's complement.
- A positive number is true binary with 0 in the sign bit.
- A negative number is in 2's complement form with 1 in the sign bit.
- A binary number can be negated by taking the 2's complement of it.

For example:

+9 → 01001 (sign bit = 0, indicating +) 2's complement of 9 → 01001 → 10110 10110 + 1 → 10111 = -9

> This is The sign BIT

When the sign-bit is zero \rightarrow Positive number If the sign-bit is set \rightarrow Negative number

Remember: 2's complement is just a conventional way of representing signed numbers in digital arithmetic – Don't ask why!

2's Complement Representation

- Assuming N+1 bits representing a 2's Complement (that is representing the number with N bits and one bit is dedicated to indicate the sign):
 - Largest positive number will be 2^N-1
 - Smallest signed number (largest negative number) will be -2^N
 - Total numbers (including zero) that can be represented will be 2^{N+1}

For example: Assume 3+1 bits Largest pos. number will be 0111= +7 Smallest number will be 1000 = -8 Remember: 1111= -1 Zero is represented by 0000 = Zero

For example: Assume 6+1 bits Largest pos. number will be ?? Smallest signed number will be ?? Zero is represented by ??

0 111 111 = 63
1 000 000 = -64
0 000 000 = 0

More Examples

Integer	2's Complement		
Signed	2 S Complement		
7	0111		
6	0110		
5	0101		
4	0100		
3	0011		
2	0010		
1	0001		
0	0000		
-1	1111		
-2	1110		
-3	1101		
-4	1100		
-5	1011		
-6	1010		
-7	1001		
-8	1000		

	Integer	2's Complement			
Signed	Unsigned	2's complement			
5	5	0000 0101			
4	4	0000 0100			
3	3	0000 0011			
2	2	0000 0010			
1	1	0000 0001			
0	0	0000 0000			
-1 255		1111 1111			
-2	254	1111 1110			
-3 253		1111 1101			
-4	252	1111 1100			
-5	251	1111 1011			

Remember: Always know how many bits are provided!

2's Complement Representation

Integer	2's Complement
Signed	2 s Complement
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Arithmetic Operations using 2's Complement

•	Inverting		Х	10110100
	 A positive number to a negative number 	Magnitude Overflow: (max unsigned number	Y	01010101
	 A negative number to a positive number Either case just take the 2's complement 	that can be represented using 8 bits is 255)	X+Y	()00001001
•	Adding A and $B \rightarrow A+B$ (assuming N bits represent the magnitude and one bit is		х	0110
	dedicated as the sign-bit)	The carry will be ignored	Y	1101
			X-Y	(001)
	Subtracting B from A \rightarrow A-B			
	 Just take the 2's Complement of B 		Х	0100
	Add A and B (A+B)	Note the value is negative	Y	1001
			X-Y	1101
		Overflow:	x	1101
		(max signed number that can be represented using	Y	1010
		4 bits is -8)	X+Y	() 0111
		Overflow: (max signed number that	Х	0 111
		can be represented using	Y	0 111
		4 bits is 7)	X+Y	1 110

Arithmetic Operations using 2's Complement

 Inverting A positive number to a negative number A negative number to a positive number Either case just take the 2's complement 							Magnitude Overflow: (max unsigned number that can be represented using 8 bits is 255)	Х	180	10110100
								Y X+Y	85 265	01010101
Adding A and $B \rightarrow A+B$ (assuming N bits represent the magnitude and one bit is dedicated as the sign-bit)							The carry will be ignored	X Y	6 -3	0110
								X-Y	3	10011
 Subtracting B from A → A-B Just take the 2's Complement of B Add A and B (A+B) NOTE: When a Positive and a Negative number are added together, the overflow will 						Note the value is negative	X Y X-Y	4 7 3	0100 1001 1101	
be a signed overflow and it is ok! The overflow can be discarded when it is sign overflow (max = -16):					Overflow: (max signed number that	x	-3	1101		
					6):		can be represented using 4 bits is -8)	X+Y	-8 -9	() 0111
-	Х	-4		11100						
-	Y	Y -9 10111			Overflow: (max signed number that	Х	7	0 111		
X+Y -13 1 10011							can be represented using	Y	7	0 111
						4 DITS IS <i>(</i>)	X+Y	14	1 110	

BCD Addition

- BDC numbers
 - □ They are between 0 and 9
 - Hence each decimal number is represented by 4 bits
- Add each number between 0-9 individually

 $0 1 1 0 \leftarrow BCD$ for 6 $0 1 1 1 \leftarrow BCD$ for 7

1 1 0 1 \leftarrow 13 but invalid! 0 1 1 0 \leftarrow Add 6 to correct

0 0 0 1 0 0 1 1 ← BDC for 13!!

BCD Addition – Another Example

BDC numbers

- They are between 0 and 9
- Hence each decimal number is represented by 4 bits
- Add each number between 0-9 individually

10 1 0 1 1 0 0 1 \leftarrow BCD for 59 0 0 1 1 1 0 0 0 \leftarrow BCD for 38

 $\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array} \begin{array}{c} 0 & 1 & 0 \\ \end{array}$

1001 0111 ← BDC for 97!!

Hex Arithmetic

- Addition of Hex numbers is similar to decimal addition
 - Remember the largest value is 16 (F) and NOT 9!
 - Carry a 1 if the number is larger than F
 - Use the following steps
 - Add the hex digits in decimal.
 - If the sum is 15 or less express it directly in hex digits.
 - If the sum is greater than 15, subtract 16 and carry 1 to the next position.

Hex Arithmetic

- Subtraction of hex numbers follows a similar method as binary numbers
 - Make sure you take the 2's complement of the negative hex number
 - Method 1:
 - Subtract the number from FFFF...
 - Write the results in hex
 - Add one to the final answer
 - For example: 2's complement of 3A5 is:

FFF-3A5=C5A → C5A+1 = C5B

- Method 2:
 - Convert the number to Binary
 - Take the 2's complement
 - Convert back the results into hex value
- Simply add the values together

